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ABSTRACT /
1385
The Lagrangian formulation of quantum dynamics in
terms of path-integrals due to Feynman describes systems
for which the Hamiltonian is classical in form and quantization
is carried out in terms of commutators rather than anticommutators.
The difficulty with the Feynman method is the actual evaluation
of the path-integral itself. We give an explicit evaluation
for classical wave motion in one dimension. This requires
an extension of the Feynman method which was introduced by
Tobocman and studied in detail by Davies.

We also discuss the work of Corson on the question of

a unified formulation of dynamics. /9',“'.-»
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1. Introduction

The path-integral approach to quantum mechanics (Feynman
1948) provides an alternative to the formulation based on the
Schrgdinger equation and the usual commutation rules. It
does not, however, describe the Dirac field in which operators
satisfy certain anti-commutation laws (Tobocman, 1956).

The difficulty with the Feynman method is the actual
evaluation of the path-integral itself. Cases which have
been explicitly evaluated are those corresponding to the
free particle and to the harmonic oscillator (Davies, 1957),

A further example is provided by thg path-integral formulatipn
of classical wave motion in one dimension. To discus; this
we first of ali reduire an extension of the Feynmaﬁ me thod

which was introduced by Tobocman (1956) and studied in detail

by Davies (1963).
2. Extension of Feynman Method

This extension is based on the Hamiltonian of the
system rather than on the Lagrangian. In it the time

development of the wave function is given by

V@,T) = [ K(g,g57m) ¥(@ho) ®



which connects the wave function \P(@",T) at time T with

. U .
the wave function \P(QND) at an earlier time. The kernel, or

path~integral, K(@',%T) is given by

1 _» .
K(‘{/;@)T) = N %WPLS“ 5 (2)

where
- T *
S = ‘Z{M/- H(pg)}at . (3)

In (3), H 1is the classical Hamiltonian of the system while
the subscript h denotes any history of the system specified
by two arbitrary functions of time ¢,(t) and p(¢) subject
to the restrictions @(0): q,’ , and q/(T)= q,” . Thus 5;, is
the classical action for a history h . In (2), % means
a sum over all histories which satisfy the end conditions and
not only over the history which is the actual classical path
between the end-points. The normalization factor N s

chosen so that

K(¢54%0 = 8(¢~4") , (%)




where is the Dirac delta function.
The equivalence of this approach to the usual one based

1
on the Schrodinger equation

Hy = ‘3% )

is readily shown by means of setting up operators in a
function space and defining an appropriate inner product.

This is now outlined.
3. The Operators 14 and ¢,

We suppose that the elements of the function space
are f(4) , ?{@) , etc. Then, following Davies (1963),

we define an iqner product ( f, 9 ) as follows
(F:9) = [{dg'dg’ $(4") AGESEST) 9(¢)) | (o
where
Al4,4°T) = /V)a: oxp ifoTrﬂq, , 7

and the histories to be summed over are those specified by

giving ¢(t) , )0((:) arbitrary values over the range Ost s T



subject to the restrictions

4y0)= 4,  41)=19"

8)
By the method described in section 5 we evaluate the
summation in (7) and find that
i i 7 ”
A(454,T) = 8(4'-4") , ®

a result independent of T Hence the inner product (f,f)

becomes

($,9) Jfdgdq F(4") 8(5/-4") $(4)

[aq) o)) gly') (0)

which corresponds with the frequently used inner product

of function space.

We now define operators corresponding to the variables
9 >p . First, we define the operator Q

to ¢4, by

corresponding

(£Q9) = [[d4'd" F(4") B(4,45T) ¢1¢/) , (11)




where

I - T
B(@»%;T) = N%q/h[b) ax/’omfo pd,q/, (12)
where a time ¢ has been associated with @ such that O<t<T

and once again the summation has to be carried out over all 4, p

histories subject to the restrictions

gylo)y =4’ , @in=4". (13)

The evaluation of (12) is carried out by the method described

in section 5 and we find that
B(4545T) = ¢ d(4-4"). (14)

Hence equation (11) becomes

o

(09) = [f#'aq F4") 4'86(¢~4") ¢1¢')

H

[d)Fw)a ¢14'), (15)

which is identical to the usual representation of the

operator corresponding to Q/



In a similar way, the operator corresponding to %7 is

defined by
(579) = [[d4/ma"F@") CW4\4"T) 9lg'), 18

where

T
C(%q/i T) = /V%_ Y, (¢) MPLJ;FWV i | (17)
It can be readily shown that

C(g4,7) = -1 (5'(@”-4/’) , (18)

/ , ..
where ) is the first derivative of the Dirac delta

function. Hence equation (16) becomes

($,79)

ff dq'dq)" F(4") (-¥) 8°(4%4)) 9(4))

Jao'Fa") [ dg' § if@f 5(4-4')} ¢@)

4 5W) a5 064™g/) (-0 %)
d@'

Jwiw) (-id) st9). (1)




where (19) has been obtained by integration by parts. Equation (19)
shows the usual quantum mechanical correspondence of the variable

¥  with the operator - v d/dq/ .

1"
4. Equivalence of the path-integral method with the Schrodinger

Approach.

Since we have now defined the operators Q 5 P
corresponding to the variables ¢, , ¥ , we can define similarly
2 .
operators corresponding to @7' and to p and, indeed, to a

function [(4,p) . Thus, we write
(£ F@M¢) = [[ag'aq F4") T(6547) §0¢/) , @0
where
L%:457) = N 2 Fyu), pe)epi [ pdg,. 2D

In the same way we can define the operator

p { -0 [ F(@Q7Y) m}

(7]

by



(f,wp{-uj:F(Q,?, vatg) = [fdgdg’ F(4) T(0045T) glg)), @D

where

T(4637) = ¥ Z ep ([ pda,~Fgprae) . @

We now choose F(q/,p,t) to be equal to H(q/,p,t) , the

Hamiltonian of a system. But now, for this particular choice
of F(Q/,p, t) , the kernel J  of equation (23) is identical
with the kernel K  of equations (1), (2) and (3) which

determined a function W(q/”,T) from a function W(@',D) . So

if we write 9«(@) = 1.}/(@,0) , we have

(f op {- 1 ["H@PR DM} V(40) = [de)F (47) wig,7)

(f) ‘!’(%T)) > (24)

and therefore we have

v < o [ v,




which is just the integral form of the Schrgdinger equation

Hy = 1 9%
ot

The equivalence of the path-integral method with the Schrgdinger

approach is therefore established.
5. Classical Wave Motion

We take the classical wave equation in one space dimension
2 2
[4 o'y (26)

and write it in the two-component form

Y
My = La’é , (27)

where
w=(u), %-_a_q) ,v—=‘a_9’, - (28)

and

M - - G‘.P > (29)
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with

o= (0’>, P=-yv2 (30)
/I 0 04,

Equation (27) is of Schrgdinger type and the equivalence

outlined in Section 4 enables us therefore to reformulate (27) as

W(9'ST) = [y K(4045T) w@ho), @D
with
K(4,45T) = N % AN (32)
and
.
So = [ [vag - mar) . (33)

Following Davies (1963) we use a Riemann definition of the

integral and write (33) as

-Sg = 2;

r=1

{ Pr(4= %) + O (t,- tm)} ) (34)
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where a partition t, =0 , £, , t, ,..., tn = T has been
made of the interval and where 44_= q(ty) and Pr: P(Tr)

with b, €T, < t, , and

| n

q/o = q/ 5 q/n: q/ . (35)
Then
fa‘/p bSh = r":—l;_ &X,P L' zpr (q/r_@f'-‘) + q‘pr(tr— tl"—l)}
- rﬂ"wp { L-Pr[q/r.q/r-;)} 003 pr (b b)) +00 s e (b b}
(36)
Averaging over the momentum variables P, , P, 5 - -, Pn

we obtain
_fwd'r’, : "fd/”h pi s, = Ir _f:M’r v gz;pr(q,r-q,r_')}

x {om Pr(te b)) + LTI p(tr tm)}

n

=T {I(Iﬂr) 0 (4 4p-y + tr-tr)

res

+ T (I-O—) d\(Di/l"_ %r‘ﬂ - tr + tr‘q) })
(37)
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where I 1is the unit 2Zx2 matrix, and where we have used

the result
L/"PWF vpq, = 2mdlg) . (38)

The summation over histories is now obtained by integration

over 4, 5 4,5 « « ., q/n_’ , so that

AZMLSC. = Lﬁd’(b, "‘f“bd«&l/n,, ﬁ g’l'(l—'f'(]') 6(%r‘@r-,+tr"tr-.)

~od r=

+r(I-0) 5(@; @r_“ Ert bf‘-l)}'
(39)

Performing the integration over q/’ we get

[, §7(140) 8(4,-4,+ bi-t) + 7 (1-0) 084, tirt)]

X {R(T+0) 8(47 4, + bumb)) +1(I-0) 8(4,4, ¢, + )

= N*(I+0) 8 (q,-4,+ ta-to) +A°(L-0)"6 (4,9, -t b)),

¢o)
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since
(T+0)(I-c) =0 , (41)
and
ob
Ld dﬁ/, 6(@:"'“’) 5(’(’--@/) = d(ﬁ/'f'ﬁ') . (42)
The integrals over @&’QQ y v @m-, can be evaluated in

the same way and we obtain

% wpiS, = T(I+0) 6(3"4 +7) + /r"(I-T)ho“(q/”-@’-T)_

(43)
Using the relations
(127)" = 2"'(I¢
tr) = 2 (Itr), (44
and introducing the normalization factor N = (Zn)-n,

we have

K(#545T) = 4 (T+0) 8(,~4+T) +1 (I~0) §(4~4~T) . 45)
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Equations (31) and (45) together provide a path-integral
formulation of classical wave motion. With given initial
conditions, equation (31) has a solution which agrees of

course with the standard D'Alembert solution.

6. Unified formulation of dynamics

We now consider the work of Corson (1963) on the question
of finding a single postulate (if one exists) that would cover
both classical and quantum dynamics. This postulate, therefore,
must lead to the Schrgdinger equation in the quantum case and
to Lagrange's equations (or equivalents) in the classical case.

The classical case is given by

6S = O, (46)

where O ' is the action defined in equation (3). Equation
(46) means that S is stationary with respect to a small
variation in the path between the endpoints (@', 0) and (q/')'T)
Now Hamilton's principle (46) is really just the simplest
form of a stationary condition involving § . It could bé

replaced by

5F(S) = 0 (47)
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with F some reasonable function of § . Corson's choice

-of F is
F(s) = expvs | (48)

because of the form of the path-integral K in equation (2).

Corson (1963) then postulates
é‘Z’_w,azlS,, = 0 (49)

as the fundamental equation of dynamics. There are two cases,
namely, (i) the definite path case, and (ii) the indefinite

path case:

(1) definite path. If there is only one path h , then

equation (49) reduces to

5%,01,'5 =0,

or

6S =0 (50)

and equation (50) leads, of course, to Lagrange's equations.

This then covers the classical case.
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(ii) indefinite path. If there are many paths, 2 &QVLjh
" h
is a function of the end-points only, and since the end-points

remain fixed under the § -variation, it follows that
5 %_ bap S, = 0 (51)

trivially. This condition therefore does not appear to lead
to anything. The classical case dS=o0 leads to
Lagrange's equations, but the many path case does not tell
us what function of the end-points Zﬁ_wpbﬁ-g actually is.
This requires an additional postulate - one involving the
notion of state or wave function.

Thus the conclusion would seem to be that Corson's
single postulate is not enough. To formulate quantum
dynamics from classical action expressions one must postulate

the time evolution of the wave function as Feynman did.
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